期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Optics and Photonics. 2025; 1: (1) ; 13-16 ; DOI: 10.12208/j.op.20250002.

The role of infrared light in cancer therapy
红外线在癌症治疗中的作用

作者: Wentong Wu *

RDFZ Xishan School, Beijing

*通讯作者: Wentong Wu,单位:RDFZ Xishan School, Beijing;

发布时间: 2025-08-15 总浏览量: 45

摘要

稀土发光近年来受到广泛关注。利用低能量光产生高能光子的过程称为上转换发光。在20世纪50年代,关于上转换(UC)发光的报道开始慢慢出现。人们开始关注这个问题。上转换(UC)发光可以通过低功率和非相干激发源进行,例如连续波激光器,标准氙气或卤素灯,甚至聚焦的太阳光。在癌细胞的治疗中,光动力疗法无疑是一个研究热点。在本文中,我将介绍稀土上转换(UC)发光的历史和机制;这类材料利用光能有着广泛的应用。在本文中,我将分析如何将其应用于癌细胞的光动力治疗;还将详细介绍构建温度传感器并通过发光特性检测癌细胞及其周围环境的温度。

关键词: 上转换;癌症治疗;红外光

Abstract

Rare earth luminescence has received widespread attention in recent years. The process of using low-energy light to generate high-energy photons is called up-conversion luminescence. In the 1950s, reports on upconversion (UC) luminescence began to slowly emerge. People are beginning to pay attention to this issue. Upconversion (UC) luminescence can be performed by low-power and incoherent excitation sources, such as continuous-wave lasers, standard xenon or halogen lamps, or even focused sunlight. In the treatment of cancer cells, photodynamic therapy is undoubtedly a research hotspot. In this paper, I will introduce the history and mechanism of rare-earth upconversion (UC) luminescence; these kinds of materials have a wide range of applications using light energy. In this paper, I will analyze how it can be applied to the Photodynamic therapy of cancer cells; building a temperature sensor and detecting the temperature of cancer cells and the surrounding environment through the light-emitting characteristics will also be introduced in detail.

Key words: Upconversion; Cancer therapy; Infrared light

参考文献 References

[1] Attia A., Balasundaram G., Moothanchery M., Dinish U.S., Bi R., Ntziachristos V., & Olivo M. (2019). A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics vol. 16, DOI:10.1016/j.pacs.2019.100144.

[2] Bagheri A., Arandiyan H., Boyer C., & Lim M. (2016). Lanthanide-doped upconversion nanoparticles: emerging intelligent light-activated drug delivery systems. Advanced Science, DOI:10.1002/advs.201500437.

[3] Bi C., Chen J., Chen Y., Song Y., Li A., Li S., Mao Z., Gao C., Wang D., Möhwald H., & Xia H. (2018). Realizing a record photothermal conversion efficiency of spiky gold nanoparticles in the second near-infrared window by structure-based rational design. American Chemical Society, DOI:10.1021/acs.chemmater.8b00312 .

[4] Horikoshi M., Inokuma S., Kijima Y., Kobuna M., Miura Y., Okada R., & Kobayashi S. (2016). The thermal disparity between fingers after cold-water immersion of hands: a useful indicator of disturbed peripheral circulation in Raynaud phenomenon patients. Internal Medicine, DOI: 10.2169/internalmedicine.55.5218.

[5] Jha S., Sharma P., & Malviya R. (2016). Hyperthermia: Role and risk factor for cancer treatment. Achievements in the Life Sciences, DOI:10.1016/j.als.2016.11.004.

[6] Jian X., Wang N., Yang C., Han Z., Xu J., Li Z., Cui Y., & Dong F. (2020). Multiwavelength photoacoustic temperature measurement with phantom and ex-vivo tissue. Optics Communications 457, DOI: 10.1016/j.optcom.2019.124724.

[7] Li Y., Li X., Zhou F., Doughty A., Hoover A., Nordqist R., & Chen W. (2019). Nanotechnology-based photoimmunological therapies for cancer. Cancer Lett DOI: 10.1016/j.canlet.2018.10.044, p.442: 429-438.

[8] Martin L., Otterson G., & Bekai-Saab T. (2012). Photodynamic therapy (pdt) may provide effective palliation in the treatment of primary tracheal carcinoma: A small case series. Photomedicine and Laser Surgery, Volume 30, DOI:10.1089/pho.2012.3293.

[9] Mesquita M., Dias C., Gamelas S., Fardilha M., Neves M., & Faustino M. (2018). An insight on the role of photosensitizer nanocarriers for photodynamic therapy. DOI: 10.1590/0001-3765201720170800

[10] Qin F., Zhao H., Cai W., Zhang Z., & Cao W. (2016). A precise Boltzmann distribution law for the fluorescence intensity ration of two thermally coupled levels. Applied Physics Letters 108, DOI:10.1063/1.4953869.

[11] Tosi D. (2018). Review of chirped fiber Bragg grating (CFBG) fiber-optic sensors and their applications. Sensors, DOI:10.3390/s18072147.

[12] Yoon I., Li J., & Shim Y. (2013). Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endosc., DOI: 10.5946/ce.2013.46.1.7.

[13] Zhu X., Feng W., Chang J., Tan Y., Li. J., Chen M., Sun Y., & Li F. (2016). Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nature Communications, Article 10437.

引用本文

WentongWu, 红外线在癌症治疗中的作用[J]. 光学与光子学, 2025; 1: (1) : 13-16.